Organelles found in both prokaryotic and eukaryotic cells

Components of Prokaryotic and Eukaryotic Cells and Functions

Cell Component Function Present in Prokaryotes Present in Animal Cells Present in Plant Cells
Plasma Membrane Separates cell from external environment; controls passage of organic molecules, ions, water, oxygen, and wastes into and out of the cell Yes Yes Yes
Cytoplasm Provides structure to cell; site of many metabolic reactions; medium in which organelles are found Yes Yes Yes
Nucleoid Location of DNA Yes No No
Nucleus Cell organelle that houses DNA and directs synthesis of ribosomes and proteins No Yes Yes
Ribosomes Protein synthesis Yes Yes Yes
Mitochondria ATP production/cellular respiration No Yes Yes
Peroxisomes
 
Oxidizes and breaks down fatty acids and amino acids, and detoxifies poisons No Yes Yes
Vesicles and vacuoles
 
Storage and transport; digestive function in plant cells No Yes Yes
Centrosome
 
Unspecified role in cell division in animal cells; organizing center of microtubules in animal cells No Yes No
Lysosomes
 
Digestion of macromolecules; recycling of worn-out organelles No Yes No
Cell wall
 
Protection, structural support and maintenance of cell shape Yes, primarily peptidoglycan in bacteria but not Archaea No Yes, primarily cellulose
Chloroplasts Photosynthesis No No Yes
Endoplasmic reticulum Modifies proteins and synthesizes lipids No Yes Yes
Golgi apparatus Modifies, sorts, tags, packages, and distributes lipids and proteins No Yes Yes
Cytoskeleton Maintains cell’s shape, secures organelles in specific positions, allows cytoplasm and vesicles to move within the cell, and enables unicellular organisms to move independently Yes Yes Yes
Flagella Cellular locomotion Some Some No, except for some plant sperm.
Cilia Cellular locomotion, movement of particles along extracellular surface of plasma membrane, and filtration No Some No

Table 1 The components of prokaryotic and eukaryotic cells and their respective functions.

References

Unless otherwise noted, images on this page are licensed under CC-BY 4.0 by OpenStax.

Text adapted from: OpenStax, Concepts of Biology. OpenStax CNX. May 18, 2016 http://cnx.org/contents/

Eukaryotes are organisms whose cells possess a nucleus enclosed within a cell membrane, making up one of the three domains of life, Eukaryota. They include multicellular organisms such as plants, animals, and fungi.

Bacteria and Archaea, the other two domains of life, are prokaryotic cells. They do not possess membrane-bound cellular compartments, such as nuclei.

Organelles found in both prokaryotic and eukaryotic cells
Lukiyanova Natalia Frenta | Shutterstock

Similarities between eukaryotic and prokaryotic cells

Cell Membrane

Both eukaryotic and prokaryotic cells bear a lipid bilayer, which is an arrangement of phospholipids and proteins that acts as a selective barrier between the internal and external environment of the cell.

Genetic Material

Eukaryotic and prokaryotic cells both use deoxyribonucleic acid (DNA) as the basis for their genetic information. This genetic material is needed to regulate and inform cell function through the creation of RNA by transcription, followed by the generation of proteins through translation.

Ribosomes

Ribosomes facilitate RNA translation and the creation of protein, which is essential to the functioning of both eukaryotic and prokaryotic cells.

Cytoplasm

The cytoplasm is the medium in which the biochemical reactions of the cell take place, of which the primary component is cytosol.

In eukaryotic cells, the cytoplasm comprises everything between the plasma membrane and the nuclear envelope, including the organelles; the material within the nucleus is termed the nucleoplasm. In prokaryotes the cytoplasm encompasses everything within the plasma membrane, including the cytoskeleton and genetic material.

Organelles found in both prokaryotic and eukaryotic cells
Structure of a eukaryotic cell. (Arisa_J / Shutterstock)

Differences between eukaryotic and prokaryotic cells

Cell size

Eukaryotic cells are ordinarily larger (10 – 100um) than prokaryotic cells (1 – 10um).

Cell arrangement

Eukaryotes are often multicellular whereas prokaryotes are unicellular. There are however some exceptions –unicellular eukaryotes include amoebas, paramecium, yeast.

True membrane-bound nucleus

Eukaryotic cells have a true nucleus bound by a double membrane. It contains the DNA-related functions of the large cell in a smaller enclosure to ensure close proximity of materials and increased efficiency for cellular communication and functions.

In contrast, the smaller prokaryotic cells have no nucleus. The materials are already fairly close to each other and there is only a "nucleoid" which is the central open region of the cell where the DNA is located.

DNA structure

Eukaryotic DNA is linear and complexed with packaging proteins called "histones," before organization into a number of chromosomes

Prokaryotic DNA is circular and is neither associated with histones nor organized into chromosomes. A prokaryotic cell is simpler and requires far fewer genes to function than the eukaryotic cell. Therefore, it contains only one circular DNA molecule and various smaller DNA circlets (plasmids).

Organelles found in both prokaryotic and eukaryotic cells
Structure of a prokaryotic cell. (In Art / Shutterstock)

Membrane-bound organelles

Eukaryotic cells contain many membrane-enclosed, large, complex organelles in the cytoplasm whereas prokaryotic cells do not contain these membrane-bound organelles.

This is a key difference because it allows a high level of intracellular division of labor and contributes to the greater complexity characteristic of eukaryotic cells.

Due to the larger size of the eukaryotic cells, confining certain cellular process to a smaller area also increases the efficiency of functions by improving communication and movement within the cell.

Only eukaryotes possess a membrane-bound nucleus and membrane-bound organelles such as the mitochondria, golgi apparatus, lysosomes, peroxisomes and ER.

Ribosome size

Both eukaryotic and prokaryotic cells contain many ribosomes; however the ribosomes of the eukaryotic cells are larger than prokaryotic ribosomes i.e. 80S compared to 70S.

Eukaryotic ribosomes also show more complexity than prokaryotic – they are constructed of five kinds of ribosomal RNA and about eighty kinds of proteins. In contrast, prokaryotic ribosomes are composed of only three kinds of rRNA and about fifty kinds of protein.

Cytoskeleton

This is a multicomponent system in eukaryotes composed of microtubules, actin filaments and intermediate filaments. It is required for maintaining cell shape, providing internal organization and mechanical support. It is also paramount in movement and cell division.

Sexual reproduction

Most eukaryotes undergo sexual reproduction whilst prokaryotes reproduce asexually. Sexual reproduction in eukaryotes results in offspring with genetic material which is a mixture of the parents’ genome and during this process, genetic variation is generated via sexual recombination.

On the other hand, a prokaryote will reproduce clones of itself via binary fission and relies more on horizontal genetic transfer for variation.

Cell division

This occurs by mitosis for eukaryotic cells and binary fission for prokaryotic cells.

Eukaryotic cells undergo mitosis then cytokinesis. This involves numerous stages - the nuclear membrane disintegrates then the chromosomes are sorted and separated to ensure that each daughter cell receives two sets (a diploid number) of chromosomes. Following this, the cytoplasm divides to form two genetically identical daughter cells i.e. cytokinesis.

In contrast, prokaryotes undergo a simpler process of binary fission. This is faster than mitosis and involves DNA (nucleoid) replication, chromosomal segregation, and ultimately cell separation into two daughter cells genetically identical to the parent cell. Unlike mitosis, this process does not involve the nuclear envelope and centromere and spindle formation.

Further Reading

  • All Cell Content
  • Structure and Function of the Cell Nucleus
  • What Are Organelles?
  • Cilia and Flagella in Eukaryotes
  • Mitosis vs Meiosis